
Accelerated Simply Periodic Task Sets for RM Scheduling
D. Müller1

1: Chemnitz University of Technology, Faculty of Computer Science, D-09107 Chemnitz, GERMANY

Abstract: The article examines rate-monotonic
scheduling (RMS). The focus is on efficient
schedulability tests of high sensitivity.
Accelerated simply periodic task sets (ASPTSs) are
constructed by shortening task periods in order to
obtain a transformed – simply periodic – task set
where each period is an integer divisor of all longer
periods. The article presents a new heuristic for par-
titioned multiprocessor (MP) scheduling based on
Specialization with respect to r (Sr) and Distance-
Constrained Tasks (DCT) which use ASPTSs first
described by Han and Tyan [9, 10]. They have al-
ready shown the advantage of Sr and DCT over the
Liu/Layland (LL) and the Burchard (Bu) bound in
terms of sensitivity. First, the article compares Sr
and DCT as well with other uniprocessor scheduling
criteria, both theoretically and empirically. Next,
these tests are applied to MP scheduling. Theory is
followed by a case study and an empirical investiga-
tion with randomised task sets. Related approaches
are thoroughly examined and summarised in a
scheme where the central role of ASPTSs becomes
obvious.
The article shows that Sr and DCT provide a very
good trade-off between maximizing the scheduling
test sensitivity (no unnecessary hardware) and min-
imizing the test’s computational complexity (towards
real-time decisions on schedulability).

Keywords: rate-monotonic scheduling, partitioned
multiprocessor scheduling, sufficient schedulability
test, Sr, DCT

1. Introduction

Scheduling in computing deals with assigning jobs to
processors. Often, equal jobs have to be executed
periodically, especially in embedded real-time sys-
tems. Then, the periodic task model applies, where
jobs are instances of a task. Each task is specified
by a period, a (relative) deadline, an execution time
and a phase. Jobs are released periodically in ac-
cordance to their task’s period. All jobs must be com-
pleted no later than the respective absolute deadline
which is the release time plus the relative deadline.
In the most typical case, the (relative) deadline
equals the period and the phase is zero. Then, only
two parameters characterizing each task remain:
period and execution time. A necessary condition for
schedulability is that the utilization, the sum of the ra-
tios between execution time and period of all tasks,
is not greater than the number of processors. Often it

is much more difficult to provide sufficient or even
necessary and sufficient conditions for schedulabil-
ity. The goal of scheduling is to assign as many
tasks as possible to the available processors, or,
closer to praxis, to minimise the number of neces-
sary processors for a given task set. So, the eco-
nomic objective is to minimise necessary CPU re-
sources, and, thus, to minimise hardware costs.
Rate-monotonic scheduling (RMS) is a widely ap-
plied scheduling policy for the periodic task model on
uniprocessor systems. It enables the scheduling of
real-time tasks with a processor utilization of at least
0.69. Often, much higher utilizations of 0.88 [17] or
even above 0.90 are possible. RMS is the optimal
static-priority scheduling scheme where task priorit-
ies are assigned fixedly over the entire scheduling.
The rule of RMS is the shorter the task’s period the
higher the task’s priority. Schedulability analysis
deals with necessary, sufficient, or necessary and
sufficient criteria for the determination whether a task
set is schedulable or not.
The only known necessary and sufficient criteria are
simulation along the entire hyperperiod of the task
set and Time Demand Analysis (TDA) [17]. Both
methods involve a computational complexity beyond
O n2 which is too expensive in many situations.

Thus, sufficient criteria have been developed in or-
der to obtain partial results much more quickly. The
best-known procedure is the Liu/Layland criterion
with only linear complexity but a bad performance.
Frequently, a false negative answer is given using
such a simple test. In that, the Liu/Layland test is a
much too pessimistic one ignoring most of the data
provided by the respective task set.
Later on, improved linear computational complexity
criteria like the Hyperbolic Bound [2] or the Burchard
criterion [3] have been developed. At the other end
of the scale, quadratic computational complexity cri-
teria like Critical Task Sets [5] and the Pillai/Shin cri-
terion [21, 13] evolved which are sufficient ones, too.
The advantage of them is that they provide high per-
formance and, thus, are good approximations of a
TDA in many situations.
In 1997, Han and Tyan [9] presented criteria Sr and
DCT with complexities O n log n and O n2 with
very good performance (sensitivity or true positive
rate). They are underrepresented in literature and
deserve a thorough investigation. This will be
provided by extensive comparisons (tables and
charts) both of theoretical and practical (empirical)

Page 1/12

nature. Finally, a multiprocessor RM scheduling case
study will be delivered.
It will be shown that DCT is the best known O n2
sufficient criterion for RM schedulability on a unipro-
cessor. Sr behaves slightly worse, but has the ad-
vantage of an only linear-logarithmic complexity.
Hence both procedures are cost-effective. It turns
out that DCT as a greedy algorithm to find an accel-
erated simply periodic task set with a utilization not
greater than one is better on the average, while the
non-greedy algorithm Sr can outperform DCT in rare
cases. Such an example is discussed.
Next, amazing interrelationships between different
uniprocessor schedulability criteria will be un-
covered. This systematization will stress the central
role of ASPTSs in this context. It will be thoroughly
explained why using transformations of task sets is
the method of choice for a decision on schedulability.
In most cases, the used transformation is an
acceleration, i.e., to shorten the periods while main-
taining the execution times of the individual tasks, re-
spectively. Here, besides simply periodic task sets,
roots and fundamental frequencies of the periods of
the task play an important role and serve as trans-
formation goals.
Partitioned RM multiprocessor scheduling1 is
strongly based on heuristics since an exhaustive
search turns out to be infeasible even for a small
number of tasks. A combinatorial explosion is the
reason. The approach is characterised by a suitable
combination of a Bin Packing heuristic and a unipro-
cessor schedulability test. A combination of First Fit
with Sr or DCT will turn out to be superior to other
known RM MP scheduling heuristics in terms of min-
imizing the number of processors required to sched-
ule a given task set. This is both performed with a
task set from a problem posed by Jane Liu as exer-
cise 9.3 in [19], p. 390 and randomly generated task
sets. The adequate generation of random task sets
is crucial for the informational value of performance
ratios. So it would be wrong to take only chains of
multiples as periods since this is a very special con-
figuration and not general enough. Thus, special
care will be devoted to the random generation of
task sets.
As an outlook on future research, the combination of
different uniprocessor schedulability tests and the in-
vestigation of runtime behaviour of the compared cri-
teria will be suggested. The latter one is important
since a purely theoretical comparison of the com-
plexities may not be appropriate to praxis. Here, be-
haviour with a lower number of tasks and the opera-
tions necessary to execute per step are important,
too, for runtime evaluations. This goes up to worst-
case execution time (WCET) analysis which is a
cornerstone of real-time analysis.

1 The alternative is global scheduling. Here, the optimal
algorithms PFAIR and LLREF are better in theory
(worst case), ignoring runtime overhead [24, 25, 26].

2. Methodology

2.1 System model

There are given n pre-emptive, independent, period-
ic real-time tasks T={T 1 ,T 2 , .. ,T n} with
T i= pi ,e i where pi is the period and e i is the

execution time. The deadline is assumed to be equal
to the period, i.e., ∀ i : pi=d i . Additionally,
∀ i : 0e i≤p i should hold. The individual utiliza-

tions ui=ei / pi sum up to the total utilization

u=∑
i=1

n

ui . The challenge is to schedule these tasks

on a set of m identical processors
P={P1 , P2 , .. , Pm} . The task priorities, denoted

by Prioi , shall be assigned statically and in a rate-
monotonic way, the shorter the period the higher the
priority. Equal period ties are broken arbitrarily, but
fixed2. Further, we restrict our considerations to the
simplest case of partitioned schemes which doesn’t
allow any migration. The last two restrictions imply
that we consider a (1,1)-restricted MP scheduling ac-
cording to the terminology introduced in [4]. The re-
maining problem is to map tasks to processors
where they can be scheduled following the rate-
monotonic uniprocessor scheduling, respectively.
We will consider only off-line algorithms where all
task parameters are initially known.
There are two approaches concerning the number of
processors. First, this number m can be fixed, and
we obtain a decision or feasibility problem whether
the task set can be feasibly scheduled. On the other
hand, the minimization problem with the objective
mmin for a given set of n tasks could be raised.

We will focus on the minimization problem.

2.2 Two scheduling elements

A strict distinction between the allocation algorithm
and the uniprocessor schedulability condition is sug-
gested. Both of them contribute to the performance
as well as to the complexity of the heuristics. In gen-
eral, a trade-off between the complexity and the per-
formance can be expected.

2.3 Allocation algorithm

The problem is related to the Bin Packing Problem.
Here, the task is to find an m -partition of a set of n
items so that the sum of item sizes in each bin is
bounded by a constant. The decision problem, cf.
2.1, is NP-Complete while the minimization problem
is NP-Hard.
For the decision problem, a brute-force search re-
quires S n ,m cases to consider. It is the number
of ways to partition a set of n items into m non-

2 It is convenient to use the task index in order to break
the ties.

Page 2/12

empty subsets, the Stirling number of the second
kind which is exponential in n . The minimization has
to check Bn different cases where

Bn=∑
m=0

n

S n , m is the n -th Bell number, see [8],

p. 258f. and p. 373. Of course, in practice certain
odd partitions can be excluded initially because of
the size distribution of items, but anyway both prob-
lems require an exponential number of cases to
check what is impractical or even impossible for a
greater n , the number of items. As the notation
already suggests, in MP scheduling, the items are
the tasks and the bins are the processors.
In order to cope with the minimization, there have
been suggested various heuristics. Typical ones are
Next Fit (NF), First Fit (FF), Best Fit (BF) and Worst
Fit (WF). According to FF, items are allocated to the
first bin it fits. In this article, we only use FF, making
the allocation algorithm a constant. Our variable is
the uniprocessor schedulability condition.

2.4 Uniprocessor Schedulability Condition

Time Demand Analysis (TDA): TDA introduced by
Lehoczky et al. [17] is beside simulation the only ne-
cessary and sufficient condition for RM schedulabil-
ity. One has to check for a fixed point of the iteration
of processing time demand which must be not great-
er than the deadline of the task (1), a computation-
ally beneficial iterative method given by Audsley
et al. [1]. Of course, this has to be done for all tasks
as the example {5,2  ,7,4  ,35,1} shows. It is
not sufficient only to check the lowest priority task.
Only the probability of a deadline violation is largest
for it since it can be disturbed by all other tasks.
Sometimes, this fact is not considered correctly. So,
Zapata et al. claim commenting an example: “Since
the lowest priority task is schedulable [..] we con-
clude that tasks [..] are also schedulable.” [23]

t i
l1=e i ∑

j : Prio jPrioi
⌈ t j

l

p j ⌉e j

t i
0=e i

∀ i∃l :t i
l1=t i

l≤ pi=d i

(1)

TDA has a pseudo-polynomial time complexity. More
precisely, it can be given as O rn2 where
r=max pi/min pi ([19], p. 137).

Pillai/Shin criterion (PS): Pillai and Shin [21, 13] sug-
gest to adapt TDA to obtain a lower-complexity, only
sufficient condition. The iteration (1) considers the
entire interval [0 ;d i=p i] for each task as it looks
for the fixed point which is the (worst case) pro-
cessing time demand of the task. As a pessimistic
approach we consider the maximum number of pre-
emptions by a higher priority task. This is the period
ratio rounded up. Multiplying it with the execution

time of the particular higher priority task and
summing up over all such tasks gives (2).

∀ i : ei ∑
j :Prio jPrio i

⌈ p i

p j ⌉e j≤p i=d i (2)

Computational complexity is O n2 .
Liu/Layland criterion (LL): Liu and Layland gave in
their classical paper [18] a sufficient upper bound of
RM schedulability depending only on the number of
tasks to schedule (3).

u≤n  n2−1=L n  (3)

Two minor mistakes in the proof were detected and
corrected by Devillers and Goossens [6]. Time com-
plexity is linear since utilization has to be summed
up over all tasks.
Liu/Layland limit criterion (LLconst): In order to make
this a constant as it is required for a complete ana-
logy to the Bin Packing Problem, cf. 2.3, the infimum
limit of L(n) is considered (4).

u≤ln 2 (4)
Again, time complexity is linear.
Hyperbolic Bound (HB): Instead of considering only
the total utilization u , it might be a good idea to in-
clude the individual utilizations u i [2]. This approach
resulted in condition (5), which is better than LL. The
more heterogeneous the utilizations are distributed,
the better is the sensitivity of the criterion.

∏
i=1

n

ui1≤2 (5)

Computational complexity is linear.
Burchard criterion (Bu): Following [3], we define

S i=log2 p i−⌊ log2 p i ⌋
for each task and build

=max S i−min S i

If 1−1/n the condition is

u≤n−12


n−1−121−−1=B n , (6)

else, i.e., ≥1−1/n , the condition is just (3).
It has been shown that B n ,≥L n always
holds. In that way, Bu is better than LL. Time com-
plexity is linear.
RBound: In 2003, Lauzac et al. [16] proposed a new
criterion. In order to apply it, the task set has to be
transformed first using an algorithm called
ScaleTaskSet which transforms T into T0 by stretch-
ing each period and execution time by an appropri-
ate power of 2. The goal is to have all new periods
between half the maximum period and the maximum
period. ScaleTaskSet includes a sorting by periods
in non-decreasing order, but this step is not neces-
sary for the criterion itself. Then, we define

Page 3/12

r=max p ' i−min p' i (7)
The condition is then

u≤n−1r
1

n−1−12
r
−1 (8)

Time complexity is linear and not log-linear as stated
in [16] since the sorting in the original algorithm can
be substituted by a min-max search loop. Only these
values are evaluated in the further algorithm and the
definition of r .
Critical Task Sets (CTS): Chen et al. [5] proposed a
transformation of the periods to a critical task set fol-
lowing the ideas of Liu and Layland in their proof of
the LL bound [18]. First, the periods are sorted in
non-decreasing order. Next, incremental subsets
starting from 2 up to n periods are considered. Such
a subset is then transformed according to

p ' j=p j⌊ pi

p j ⌋ (9)

with i as the outer loop index and j as the inner loop
index. This results in a maximum period ratio no lar-
ger than 2 . Then, the construction of a critical task
set based on [18] with a calculation of the improved
utilization bound is possible.

(10)
The utilization must be no larger than the minimum
of the critical task set utilizations of the incremental

subsets and (from the necessary condition) 1 . Com-
putational complexity is O n2 .
Summary and Anticipation: In order to give a sum-
mary we provide a comparison of the different uni-
processor schedulability conditions in Table 1 includ-
ing an anticipation (printed in italics) of our proposed
conditions introduced later in Section 3.

3. Special task sets

3.1 Accelerated task sets

A task set T={T 1 ,T 2 , .. ,T n} can be transformed
into an accelerated task set T ' by maintaining all
execution times e ' i=ei and reducing or maintaining
all periods p ' i≤pi . Thus, the new utilization

u '=∑
i=1

n e ' i

p ' i
≥∑

i=1

n e i

pi
=u is not less than the original

one. Note that the case of equivalence between ori-
ginal and newly constructed periods is included.
This allows us to give the following theorem.
Theorem 1 (RM schedulability by accelerated
task sets)
Given a task set T it is schedulable by RM if there is
an accelerated task set T ' which is schedulable by
RM.
For a proof, see [9].
3.2 Simply periodic task sets

A task set T={T 1 ,T 2 , .. ,T n} is called simply peri-
odic if and only if there is an integer ratio (non-negat-
ive) between the periods of each pair of tasks selec-
ted from T . The condition can be written as (11).

Page 4/12

condition n u ui pi e i specifics complexity guaranteed equal to
or better than

LLconst x pure bin packing O n

LL x x most famous O n LLconst

HB x O n LL

Bu x x x O n LL

RBound x x x transformation O n LL

PS x x transformation O n2

CTS x x transformation O n2 LL

Sr x x transformation O n log n Bu, LL

DCT x x transformation O n2 TDA for n=2

TDA x x iteration O rn2 (all)

Table 1: RMS uniprocessor schedulability conditions, r defined in (7)

u≤min{∑j=1

i−1

p' j1− p' j

p' j
2p '1− p' i

p ' i
∣i=2..n}∪{1}

∀ i , j∃c i , j∈ℕ:
max {pi , p j}
min{pi , p j}

=c (11)

The intention behind extracting such special task
sets is to fit every task completely into all tasks
which have a larger period.
Note that, e.g., the task set {3,1 , 6,1 , 9,1} is
not simply periodic although there is a great regular-
ity in the periods. Obviously, 9 is not an integer mul-
tiple of 6 . The pattern behind with a step-wise in-
crease by the minimal period is only appropriate for
task sets of size 2 . We can repair the fault and ob-
tain {3,1 , 6,1 , 12,1} as a valid example for a
simply periodic task set.
On the other hand, one could be tempted to restrict
the pattern to {a⋅bi , ei} with b∈ℕ . It is obvious
that a=1.5 and b=2 in the previous valid example.
In general, a ratio c  i , j=b∣i− j∣ must be an integer
following that construction. Considering a task set
like {3,1 , 15,1 ,30,1} which doesn’t fit into
the above given pattern clarifies that the approach
was too restrictive. Relaxing the condition we can
state the following lemma:
Lemma 1 (Characterization of simply periodic
task sets)
A task set T={T 1 ,T 2 , .. ,T n} is simply periodic if
and only if an (index-dependent) integer ratio exists
for all direct neighbours in the non-decreasingly
ordered list of task periods.
A proof in forward direction is easy since the ratio is
directly given by definition (11). Assuming a non-in-
teger ratio between two task periods leads immedi-
ately to contradiction to definition (11). In backward
direction, we have to construct the period ratio
between two arbitrary periods and to show that this
ratio is always an integer. The ratio is the product of
all neighbour ratios along the unique path from min-
imum to maximum period. Since ℕ is closed under
multiplication, it is indeed a non-negative integer. A
test based on Lemma 1 is O n log n . Sorting is
the dominating step, the check for integer ratios is
only of linear complexity.
It turns out that the pattern {a⋅bi , ei} can be re-
garded as a special case with a constant neighbour-
ing period ratio of b . The misleading thought in the
first attempt was the assumption that there should be
a constant integer-additive relationship between
neighbouring periods, but it has to be a variable in-
teger-multiplicative one. The second approach is – in
that terminology – a constant integer-multiplicative
one and too specific.
Intuitively, it might be clear that the zero cut-off prop-
erty mentioned in the beginning of this subsection
enables for a rate-monotonic scheduling without idle
processor time which lifts it to the same performance
as EDF scheduling under maintenance of its simpli-
city. This fact is expressed in the following theorem.

Theorem 2 (RMS on a simply periodic task set)
A system consisting of a single simply periodic task
set is schedulable by RMS if and only if u≤1 .
A proof sketch is given in [19], p. 129f.
3.3 ASPTSs: Sr and DCT
As the naming already suggests, an ASPTS has to
be conform to both conditions (3.1 and 3.2) at the
same time. Such a s ways exists to a given task set,
but is not unique.
Lemma 2 (Accelerated simply periodic task set)
For an arbitrarily given task set T={T 1 ,T 2 , .. ,T n}
, there always exists an ASPTS. It is not unique.
This can be shown easily by construction.
T '={T '1 ,T ' 2 , .. ,T ' n} with ∀ i : p' i=inf i {pi}

fulfils the conditions since all periods are not in-
creased and a common period means an integer ra-
tio of 1 for all possible pairs.
A straightforward step is it to combine Theorems 1
and 2 to our main theorem:
Theorem 3 (RM schedulability of ASPTSs)
In order to show RM schedulability of a given task
set T , it is sufficient to show that there is an acceler-
ated simply periodic task set T ' with u '≤1 .
A proof is given in [9]. Theorem 3 as a sufficient con-
dition offers a new way to prove RM schedulability
as suggested by [9, 10]. It suffices to look for
ASPTSs and to minimise the total utilization. The
new test is then given by (12).

∃T '={T '1 ,T '2 , .. ,T 'n}:∑
i=1

n e ' i

p ' i
≤1

subject to
∀ i : p ' i≤ pi

∀ i : e ' i=e i

and (11)

(12)

Note that the test can be cancelled as soon as a
transformed task set with a feasible utilization is
found. If there is such a u '≤1 , the original task set
is schedulable by RM, if not we cannot make a claim
on schedulability by RM3. For the purpose of finding
candidate ASPTSs with low utilizations, two al-
gorithms coined Sr and DCT4 were proposed in [9,
10]. Sr is a specialization described as well in [19], p.
414ff. and has its origin in pinwheel scheduling [11].
While Sr accelerates to a task sets obeying the pat-
tern {a⋅bi , ei} with b=2 (discussed in 3.2), DCT

3 Of course, this can be checked by TDA or a schedul-
ing simulation both of which are exact (necessary and
sufficient) tests.

4 Sr means Specialization with respect to r which is fur-
ther explained in [10]. DCT probably means Distance-
Constrained Tasks. Definitely, it has nothing to do
with the Discrete Cosine Transform known from sig-
nal and image processing.

Page 5/12

uses individual ratios according to p ' j=p i/⌈ pi

p j ⌉
and p ' i=⌊ pi

p j ⌋ p j for pip j which are the locally

optimal transformations.
This greedy approach will be discussed in 3.4. The
computational complexity of tests based on these
two algorithms is O n log n and O n2 . Sr uses
a sorting5 and precalculation of partial sums which
enables for an iterative calculation of utilizations
avoiding a double loop with complexity O n2 . This
is further explained in [9] and [10]. For a better un-
derstanding of the two algorithms, see example in
Table 2. The best results can be obtained using a
combination of both algorithms. A task set is marked
RM schedulable if one of both algorithms Sr and
DCT is able to find a task set T ' with u '≤1 . The
complexity of this approach, coined Sr∨DCT , is
O n2 .

3.4 Theoretical Performance of Sr and DCT

Theorem 4 (Theoretical Performance Sr/DCT)
A test based on Sr is better than LL and better than
Bu since each task found to be RM schedulable by
LL or by Bu can also be found to be schedulable by
Sr [9, 10]. DCT is necessary and sufficient for the
case of n=2 [9].
There are task sets not passing LL or Bu tests but Sr
as will turn out by example in Section 4, so the first
part describes a proper relationship. The second part
of the theorem makes DCT equivalent to TDA in the
case of n=2 . Note that this results in another ad-
vantage over the compound algorithm Rate Mono-
tonic General Tasks (RMGT) [3] which uses Rate
Monotonic Small Tasks (RMST) [3] based on a sim-
plification of Bu for small tasks and TDA for large
tasks. Such a quite complicated heterogeneity in
testing is no longer necessary by using DCT. It can
be shown that DCT is equivalent to the necessary
and sufficient test given as Theorem 32.9 in [7]. The
condition for schedulability with n=2 and p1≤p2
is given there as

e2≤⌊ p2

P1 ⌋ p1−e1max{0, p2−⌊ p2

P1 ⌋ p1−e1}
(13)

This interrelationship stresses the prime importance
of the given approach. As an example, we test the
schedulability of task sets of the kind
{5,e1 ,7,e2} . The possible pairs of e1 and e2

resulting in a schedulable task set can be visualised
graphically, see Figure 1.

5 Sorting is O n log n .

The filled region denotes the solution set. The linear
function e2=5−e1 represents the utilization limit if
the second task is accelerated to a period of 5 .
Second, the first task could be accelerated to a peri-
od of 3.5 resulting in an acceleration limit of
e2=7−2 e1 . Since the existence of one ASPTS

suffices according to Theorem 3, a union of both tri-
angles gives the solution set. Note further that the
PS bound (2) only considers e2≤7−2 e1 as con-
straint omitting the other possibility e2≤5−e1 in the
OR term. Thus, the dark grey region represents task
sets detected schedulable by DCT but not by PS,
characterizing DCT superior to PS. For n=2 , DCT
is always equal to or better than PS since the PS
constraint is relaxed by an additional OR term.
Finally, we want to point out that DCT pursues a
greedy strategy when constructing the accelerated
task sets. It will turn out that this approach is (in the
average case) superior to the more restricted one
only using the simply periodic task pattern
{a⋅bi , ei} introduced in 3.2 where, additionally,
b=2 , which corresponds to Sr. Anyway, there are

rare cases where the greedy DCT is worse than Sr.
An example is the task set {2,1 , 11,2 , 17,4 } ,
see Table 2. DCT accelerates it to

{2,1 , 10,2 , 10,4 } , {
11
6

,1 ,11,2 ,11,4}

and {1.7,1 ,8.5,2 ,17,4} , all of them not
meeting the utilization bound of 1. Sr transforms the
task set to {2,1 , 8,2 , 16,4 } ,

Page 6/12

Figure 1: Task sets of the kind {5,e1 ,7,e2}
detectable by DCT (light and dark grey) and PS
(only light grey) in the first quadrant of the e1e2

plane

{ 11
8

,1 ,11,2 ,11,4} and

{ 17
16

,1 , 17
2

,2 , 17,4} . Choosing the first task

as pivot results in a utilization of exactly 1 . Thus, the
original task set is RM schedulable6. In this particular
case, it is better to accelerate T 2 more because the
so enabled lower acceleration of T 3 results in a
lower total utilization.

original Sr DCT

i pi ei p ' i p ' i p ' i p ' i p ' i p ' i

1 2 1 2 11/8 17/16 2 11/6 1.7

2 11 2 8 11 8.5 10 11 8.5

3 17 4 16 11 17 10 11 17

u 0.917 1 1.273 1.925 1.1 1.091 1.059

Table 2: A task set detected schedulable by Sr,
but not by DCT; pivot periods are written in
coloured background, utilizations are rounded
to 3 decimal places

4. Case study

As a first test, we want to apply the suggested ap-
proach to a problem raised as exercise 9.3 in [19], p.
390. Ten asks with parameters given in Table 3 shall
be scheduled on a multiprocessor system. The obvi-
ous question is for the minimal number of processors
necessary. Following the sub-tasks given by [19], p.
390 both with FF-LL and RMST, a number of pro-
cessors of m=4 is obtained. This is not the optimal
number of m=3 . Clearly, with a total utilization of
u≈2.47 , a schedule with only two processors is

impossible. By running the heuristics, it turns out that
only FF-TDA, FF-DCT, FF-PS, FF-CTS and FF-Bu7

achieve the optimal number of 3. All other
approaches find the sub-optimal solution of m=4 .
Here, the border line runs almost exactly between
the O n and the higher complexity methods. Only
the more complex criteria and Bu are able to obtain
the optimal value of m=3 . This suggests strongly

6 We can also consider other bases than b=2 for the
specialization. The average performance becomes
worse [7], but in rare cases, they can be better. Note
that, e.g., {2,1 , 20,2 , 55,20} can be detected
schedulable by Sr with b=3 , but neither by Sr nor by
DCT. So, consecutive tests with different bases can
improve the result. On the other hand, the gain might
be low and not worth the effort in most cases.

7 Note that FF-Bu is an improved version of RMST
since it uses the Bu criterion in its original form in-
stead of the simplified one used by RMST.

that it is worth not only to use linear complexity
heuristics in MP scheduling.

i 1 2 3 4 5 6 7 8 9 10

pi 7 21 29 49 64 66 160 235 260 450

ei 2 3 9 15 20 16 32 72 25 120

Table 3: Parameters of 10 periodic tasks for
multiprocessor scheduling
Further investigations shall consider the number of
partitions leading to a schedulable configuration
found by the different heuristics. The most general
approach giving exactly the possible partitions and
so the optimal number of processors, too, is to com-
bine the exact methods of both scheduling elements,
cf. 2.2. Thus, a brute-force search with TDA will be
the reference. The number of cases to consider is
the 10th Bell number which is 115975 , cf. 2.3. This
is possible with a today’s computer in a reasonable
amount of time. Anyway, we want to limit the search
space and then compare the performance of the dif-
ferent algorithms in the specified parts of the search
space. Since we already know that the optimal value
is m=3 , this part close to the border of impossibility
to schedule is the most interesting one. There are
still S 10,3=9330 possibilities, cf. 2.3. Among
them, we want to consider three combinations of
numbers of tasks assigned to each of the three pro-
cessors: 4−3−3 , 4−4−2 and 5−3−2 . They
contain 2100 , 1575 and 2520 cases, respectively.
In Table 4, a comparison of the different unipro-
cessor schedulability conditions in relationship to
TDA as the reference is given. Performance has to
be seen as sensitivity or true positive rate.

4−3−3 4−4−2 5−3−2

TDA 763 70 9

Sr∨DCT 470 61.6% 12 17.1% 0 0.0%

DCT 462 60.6% 11 15.7% 0 0.0%

Sr 268 35.1% 2 2.9% 0 0.0%

CTS 385 50.5% 22 31.4% 0 0.0%

PS 433 56.7% 17 24.3% 7 77.8%

HB 0 0.0% 0 0.0% 0 0.0%

Bu 2 0.3% 0 0.0% 0 0.0%

RBound 1 0.1% 0 0.0% 0 0.0%

LL 0 0.0% 0 0.0% 0 0.0%

LLconst 0 0.0% 0 0.0% 0 0.0%

Table 4: Performance of different
uniprocessor schedulability conditions on a
set of ten tasks

Page 7/12

Clearly, the conditions Sr∨DCT , DCT, Sr, CTS
and PS outperform all other conditions significantly.
Among them, the combination of Sr and DCT, which
requires the highest effort, delivers the best perform-
ance in the most typical 4−3−3 case. But the ad-
vantage is only marginal, so using DCT might be suf-
ficient. In the exotic cases 4−4−2 and 5−3−2 ,
CTS and PS outperform the suggested approaches.
This is interesting, but should not be overvalued
since the sample size is very small. Remarkable is
the breakdown of almost all known only sufficient
conditions in the particularly difficult case 5−3−2 .
An exception is PS which detects 7 of 9 correct
partitions. It can be seen as an outlier. Results in
Section 5 will deliver more evidence.

5. Simulation with randomised task sets

In the following, we will present two simulation res-
ults, one for uniprocessor scheduling and one for
multiprocessor scheduling. An important step in both
cases is the generation of random task sets. The
core of such a function is pseudo random number
generation. In order to obtain a uniform distribution it
is wrong to use a modulo operator since this opera-
tion restricts the result to only the lower value bits.
Instead, scaling by division should be used.

5.1 Uniprocessor
Tasks are randomly given an integer execution time
in [1,10] (uniform). The period results from adding
an integer uniform distribution in [1,100] to the exe-
cution time. The target is n=10 and u=0.70..0.96 .
So, the total utilization is incremented in steps of
0.02 . If the target utilization is reached or sur-
passed with less than 10 tasks this set will be omit-
ted. Otherwise, the execution time of the 10th task is
reduced in order to reach the respective target
utilization exactly. 10,000 task sets exactly meeting
the requirements for n and u are checked for each
u , where for u=0.96 only 100 task sets are
checked. The reason is that it is much more unlikely
that they are RM schedulable. The results can be
seen in Figure 2.
We can see that higher utilization task sets are more
difficult to recognise as schedulable. This is true for
all investigated uniprocessor schedulability condi-
tions. The slight increase from 0.94 to 0.96 is not
significant since the sample size of 100 , see above,
is not convincing. Note that LL breaks down already
right above u=0.70 since the limit 10 21/10−1 is
between 0.70 and 0.72 . All three newly proposed
conditions are better than the established ones in all

Page 8/12

Figure 2: Performance of different uniprocessor schedulability conditions on randomised sets of ten
tasks; 10,000 simulations per u value; Sr + DCT curve is only slightly above the DCT curve

0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96
0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%
Sr+DCT
DCT
Sr
CTS
PS
Bu
RBound
HB
LL

utilization

se
ns

iti
vit

y

cases. Best sensitivity delivers Sr∨DCT . But the
improvement compared to pure DCT is marginal and
doesn’t pay off the higher effort. So, DCT turns out to
be the condition of choice. Note that both CTS and
PS as the other conditions with O n2 complexity
besides DCT reach medium sensitivity. Anyway, a
serious drawback of PS is its lack of a guarantee, cf.
Table 1, compared to LL. So, for low utilizations PS
is worse than the linear complexity LL condition. On
the other hand, CTS includes a guarantee, but ex-
hibits worse behaviour compared to DCT or Sr. Sr
shows a good performance related to its computa-
tional complexity of O n log n .

5.2 Multiprocessor
For the multiprocessor case, the target utilization is
2.5 . In order to enable this, the period results here
from adding an integer uniform distribution in [1,30]
to the execution time. For all criteria, FF was used as
allocation algorithm. In the cases of Bu and RBound,
a processing of the task set has been conducted be-
fore applying FF. For Bu, tasks are sorted by the S
values, cf. 2.4.6, in non-decreasing order. For
RBound, the procedure ScaleTaskSet, cf. 2.4.7, in-
cluding a sorting of the transformed set with non-de-
creasing periods is applied. Such a preprocessing
further improves the performance of the algorithms
being opponents to the new ones, and, thus, makes
the competition even harder.
The value m is the result of the minimization prob-
lem. 100,000 task sets have been checked by each
heuristic, respectively. Figure 3 shows the results.

Note that the m value of 5 occurs so rarely that it is
almost invisible in the bars CTS, PS, HB and LL.
Clearly, again the three new heuristics based on the
new criteria outperform the established ones signific-
antly. While they peak, together with the exact uni-
processor schedulability condition, at m=3 , the oth-
er ones peak at m=4 . This means that they would
waste an entire processor in most cases. Again,
Sr∨DCT has no great advantage compared to

DCT itself. Thus, we recommend to use DCT.

6. Related Work

Sr and DCT are underrepresented in literature. While
the article by Zapata and Alvarez [22] not even men-
tions the great work of Han and Tyan, Lauzac et al.
[16] shortly discuss their approach, but claim that
“[..]SRFF is always between that of RMFF and
RBound[..]” [16] and then no further consider it. Za-
pata et al. came in [23] to the result that DCT and Sr
yield the best performance among all sufficient tests
they investigated.
In [15], Kuo et al. claim to have found a polynomial-
time schedulability test with higher performance and
efficiency. The idea is to use the number of roots in-
stead of the number of tasks in the LL formula. A
task is called a root if there is no other process with
a larger period that is an integer multiple of the ori-
ginal period. There are task sets for which their so
called Root-Based test recognises schedulability
where all other tests collapse. But the problem is that
this is only possible for very artificial task sets as
they have been used in their “simulations”. Only in
case of task sets with a single root the bound be-
comes 1.0 . In all other cases, it is almost as bad as
LL since the most typical number of roots is close to
the number of tasks itself. E.g., for the task set given
in Section 4, there are 9 roots. Thus, the Root-
Based test with O n2 complexity [15] is in the aver-
age case much worse than the proposed tests. An il-
lustrative example is the task set
〚5,2 , 7,4  ,35,1〛 . At first, it seems to be RM

schedulable since there is one root and utilization is
exactly one. The problem is that the precondition in
Theorem 4 in [15] is not fulfilled. The algorithm has
to be done in an iterative or recursive manner. In the
example, the middle priority task doesn’t meet its
deadline. On the other hand, this property makes the
approach suitable for on-line schedulability [15].
Similarly, Kuo and Mok [14] suggested a schedulab-
ility condition based on the number of fundamental
frequencies. In the division graph, which is the
Hasse diagram induced by the half order relationship
pi∣p j , it coincides with the number of fundamental

chains. Again, this number is then put into the LL for-
mula. An algorithm finding the number of fundament-
al frequencies with a complexity of O n5/2 is given
in [14] by Kuo and Mok. Chen et al. gave an im-

Page 9/12

Figure 3: Results of the MP scheduling minim-
ization problem (value of m) for randomised
task sets with u = 2.5 and n = 10 using FF with
different uniprocessor schedulability condi-
tions; Bu and RBound apply a preprocessing
concerning the order of the tasks

TD
A

Sr
+D

C
T

D
C

T Sr
C

TS
R

Bo
un

d Bu PS HB LL

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

5
4
3

provement to O n2 complexity in [5] with the addi-
tional advantage that their Algorithm 2 can obtain a
smaller k value if a root is smaller than a leaf. The
problem is that these algorithms result in a high
sensitivity only for sets with just one fundamental fre-
quency. Note that this means a simply periodic task
set which corresponds to a very restricted part of the
parameter space.
The common problem of the criteria based on the
number of roots or the number of fundamental fre-
quencies [14, 15] is that they do not transform the
task set and so remain too specific. Thus, they are
not able to reach good average sensitivity on ran-
dom task sets. The argument of the authors that har-
monic rates are typical e.g. for multimedia processes
[15] trivialises the problem. A configuration with just
one harmonic chain can be detected without any ad-
vanced algorithm in most cases.
As a consequence, it might be a good idea to com-
bine the basic idea of the Root-Based test with a
transformation to accelerated task sets. But it turns
out that in case of assuming only one root, which is
then the task with the longest period, such a “test”
would not be sufficient. The reason is that deadline
violations in RMS can not only occur in the lowest
priority task. Instead, all tasks8 have to be checked
for possible deadline violations in the accelerated
task set with only one root. This leads directly to PS,
see (14). T i corresponds to a root task. The denom-

inator p i/⌈ p i

p j ⌉ is the reduced period of the appro-

priate accelerated task T j and is closely related to
the term used in DCT for shorter period tasks. The
difference is that in DCT, the shortening is applied it-
eratively while here, it is applied related to the root
task. This becomes apparent by again considering
the task set {2,1 , 11,2 , 17,4} given in 3.4. It
will be accelerated to {17/9,1 ,8.5,2 ,17,4}
with a utilization of exactly 1 and, thus, T 3 experi-
ences no deadline violation. Here, T 2 is not distorted
by T 1 since it can be accelerated to
{11/6,1 , 11,2 } with a utilization less than 1 .

Thus, not only Sr, see 3.4, but also PS is able to de-
tect {2,1 , 11,2 , 17,4 } as RM schedulable.
So, PS is closely related to DCT which highlights the
central role of ASPTSs.

8 The only exception is the highest priority task which
always will be scheduled at the beginning of its peri-
od.

∀ i :e i ∑
j : Prio jPrioi

e j

p i

⌈ p i

p j ⌉
≤1⇔

∀ i : ei ∑
j :Prio jPrio i

⌈ p i

p j ⌉e j≤p i=d i

(14)

The so called Algorithm 3 by Chen et al. in [5] with a
complexity of O n3 is an improvement of CTS. As a
preprocessing, periods which are integer divisors of
other periods and other ones fulfilling an advanced
condition are eliminated. According to [23], the per-
formance of this algorithm is in the range of DCT and
Sr, but it can outperform them only in case of small
maximum task utilizations ≤0.5 . A serious draw-
back is the high complexity. Often, a TDA will be
preferable.
Similar to CTS, Park et al. [20] gave a linear pro-
gramming (LP) approach in order to obtain a task set
specific utilization bound, too. A total utilization
below the LP bound means that at least one of the
constraints must be violated. Hence, for a single de-
cision on schedulability, it is sufficient to test all given
constraints. A sole violation entails schedulability of
the task set. By not finding such a violation, nothing
can be said on feasibility. The criterion is sufficient
but not necessary. The approach is closely related to
PS. The set of constraints could be reduced by Hu
and Quan [12]. They claim that their best algorithm

Page 10/12

Figure 4: Relationships between different uni-
processor scheduling criteria

can outperform DCT for larger values of n . But they
have to admit that DCT is much better in terms of
running time, ca. one order of magnitude in their
tests. Their constraints correspond to a generaliza-
tion of PS. Instead of only checking with the period
pi of the incremental lowest priority task, acceler-

ated periods ⌊ p i

p j ⌋ p j are tested, too. Finally, all oth-

er tasks are accelerated related to the accelerated
lowest priority task. The idea of the Root-Based test
is exploited as done in PS. Since PS is O n2 and
the extension is an additional loop over tasks, this
approach has a computational complexity of O n3 ,
and is, thus, not a direct competitor of DCT or Sr.
E.g., the schedulability of the task set
{2,1 , 11,2 , 17,4 } given in 3.4 can be detec-

ted with their LP approach. It accelerates the set to
{2,1 , 8,2 , 16,4 } as Sr does. Thus, the ap-

proach seems to be conceptually interesting and
reaches a very good performance at the price of
much higher complexity and running times than
Sr/DCT. In the case of n=2 , it turns out to be
equivalent to DCT and, thus, to be a necessary and
sufficient criterion. LP can be seen as filling a gap
between PS and TDA. Summing up, see Figure 4.

7. Conclusions

We came to the result that DCT is the best known
O n2 sufficient criterion for RM schedulability on a

uniprocessor. Our simulations suggest that multipro-
cessor scheduling heuristics based on Sr or DCT
outperform all other heuristics under investigation.
With a computational complexity of O n log n
and O n2 , the criteria are less complex than TDA
which is pseudo-polynomial. On the other hand, they
are more complex than classical criteria with linear
complexity. A serious competitor is the Critical Task
Set test. Anyway, it turned out to be worse than Sr
and worse than DCT. The Pillai/Shin test with a com-
plexity of O n2 like DCT provides no guarantees at
all and exhibits in most cases a worse sensitivity
than DCT. In a concrete run-time comparison, DCT
is often faster than the linear complexity criteria
RBound or the Burchard criterion since they include
several loop cycles, making the constant belonging
to O n high, and use expensive operations like
power and logarithm extensively. This is also true for
Sr. Thorough investigation of runtime behaviour
could be dealt with in future research.
Interrelationships between ASPTSs and the con-
cepts of the Root-Based test and the Pillai/Shin test
have been pointed out. The connection between the
LP approach of Hu and Quan, DCT, and the Root-
Based test has been given explicitly. An extensive
study of related work has shown that a lot of
approaches are closely related to ASPTSs.

DCT delivers an outstanding performance at a rea-
sonable practical run-time. Additionally, DCT
provides a necessary and sufficient criterion for task
sets of size n=2 making it as powerful as TDA in
this particular case. Last but not least, the principle
behind DCT, taking one period as a pivot and con-
structing a harmonic set by shortening (if necessary)
all other periods, is well understandable and can be
applied even by humans and not only by computers
for smaller values of n . Its elegance strongly sug-
gests a higher influence on teaching.
A further improvement can be achieved by combin-
ing different tests. Here, Sr∨DCT lead to only very
little´gain, not paying off the increased effort. The
combinations PS∨DCT (similar to the LP approach
by Hu and Quan [12]) and CTS∨DCT might be
more promising since the concepts behind are less
similar. This could be a matter of future research.
A combination of the new tests with the FF policy
leads to new powerful MP scheduling heuristics.
They can reach results close to the optimum. This
suggests that the algorithms Sr and DCT are still
better suitable for multiprocessor scheduling.

8. Acknowledgement

The author acknowledges the contribution of his col-
leagues to this work.

9. References

[1] N. Audsley, A. Burns, M. Richardson, K. Tindell,
and A.J. Wellings. Applying new scheduling theory
to static priority pre-emptive scheduling. Software
Engineering Journal, 8(5):284–292, Sep 1993.

[2] Enrico Bini, Giorgio Buttazzo, and Giuseppe But-
tazzo. A hyperbolic bound for the rate monotonic al-
gorithm. In ECRTS ’01: Proceedings of the 13th

Euromicro Conference on Real-Time Systems,
pages 59–66, Washington, DC, USA, 2001. IEEE
Computer Society.

[3] A. Burchard, J. Liebeherr, Yingfeng Oh, and S.H.
Son. New strategies for assigning real-time tasks to
multiprocessor systems. Computers, IEEE Trans-
actions on, 44(12):1429–1442, Dec 1995.

[4] John Carpenter, Shelby Funk, Philip Holman,
James Anderson, and Sanjoy Baruah. A
categorization of real-time multiprocessor schedul-
ing problems and algorithms. In Handbook on
Scheduling Algorithms, Methods, and Models,
pages 30–1–30–19. Chapman Hall/CRC, Boca,
2004.

[5] Deji Chen, Aloysius K. Mok, and Tei-Wei Kuo. Util-
ization bound revisited. IEEE Transactions on Com-
puters, 52(3):351–361, 2003.

[6] R. Devillers and J. Goossens. Liu and layland’s
schedulability test revisited. Information Processing
Letters, 73(5-6):157–161, March 2000.

[7] Sudarshan K. Dhall. Approximation algorithms for
scheduling time-critical jobs on multiprocessor sys-
tems. In Handbook on Scheduling Algorithms,

Page 11/12

Methods, and Models, pages 32–1–32–30. Chap-
man Hall/CRC, Boca, 2004.

[8] Ronald L. Graham, Donald E. Knuth, and Oren Pa-
tashnik. Concrete Mathematics: A Foundation for
Computer Science. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1994.

[9] C.-C. Han and H.-Y. Tyan. A better polynomialtime
schedulability test for real-time fixed-priority
scheduling algorithms. Real-Time Systems Sym-
posium, IEEE International, 0:36–45, 1997.

[10] Ching-Chih Han, Kwei-Jay Lin, and Chao-Ju Hou.
Distance-constrained scheduling and its applica-
tions to real-time systems. Computers, IEEE Trans-
actions on, 45(7):814–826, Jul 1996.

[11] R. Holte, A. Mok, L. Rosier, I. Tulchinsky, and D.
Varvel. The pinwheel: a real-time scheduling prob-
lem. System Sciences, 1989. Vol.II: Software
Track, Proceedings of the Twenty-Second Annual
Hawaii International Conference on, 2:693–702
vol.2, Jan 1989.

[12] Xiaobo (Sharon) Hu and Gang Quan. Fast perform-
ance prediction for periodic task systems. Hard-
ware/Software Co-Design, International Workshop
on, 0:72, 2000.

[13] C. M. Krishna and K. G. Shin. Real-Time Systems.
McGraw-Hill, 1997.

[14] T.-W. Kuo and A.K. Mok. Load adjustment in adapt-
ive real-time systems. Real-Time Systems Sym-
posium, 1991. Proceedings., Twelfth, pages 160–
170, Dec 1991.

[15] Tei-Wei Kuo, Li-Pin Chang, Yu-Hua Liu, and Kwei-
Jay Lin. Efficient online schedulability tests for real-
time systems. IEEE Trans. Softw. Eng., 29(8):734–
751, 2003.

[16] Sylvain Lauzac, Rami Melhem, and Daniel Mossé.
An improved rate-monotonic admission control and
its applications. IEEE Trans. Comput., 52(3):337–
350, 2003.

[17] John P. Lehoczky, Lui Sha, and Y. Ding. The rate
monotonic scheduling algorithm: Exact
characterization and average case behavior. In
RTSS, pages 166–171, 1989.

[18] C. L. Liu and James W. Layland. Scheduling al-
gorithms for multiprogramming in a hard-real-time
environment. J. ACM, 20(1):46–61, January 1973.

[19] Jane W. S. Liu. Real-Time Systems. Prentice Hall,
2000.

[20] Dong-Won Park, S. Natarajan, A. Kanevsky, and
Myung Jun Kim. A generalized utilization bound
test for fixed-priority real-time scheduling. Real-
Time Computing Systems and Applications, Inter-
national Workshop on, 0:73, 1995.

[21] Padmanabhan Pillai and Kang G. Shin. Realtime
dynamic voltage scaling for low-power embedded
operating systems. SIGOPS Oper. Syst. Rev.,
35(5):89–102, 2001.

[22] Omar U. Pereira Zapata and Pedro Mejia Alvarez.
EDF and RM multiprocessor scheduling algorithms:
Survey and performance evaluation. Technical re-
port, Departamento de Computación, CINVESTA-
VIPN, Mexico, 2005.

[23] Omar U. Pereira Zapata, Pedro Mejia Alvarez, and
Luis E. Leyva del Foyo. Comparative analysis of

real-time scheduling algorithms on one processor
under rate monotonic. Technical report, Departa-
mento de Computación, CINVESTAV-IPN, Mexico,
2005.

[24] Cho, H.; Ravindran, B. & Jensen, E. D. An Optimal
Real-Time Scheduling Algorithm for
Multiprocessors, Real-Time Systems Symposium,
IEEE International, 0: 101-110, 2006

[25] Baker, T. P. Comparison of empirical success rates
of global vs. partitioned fixed-priority and EDF
scheduling for hard real time, Technical Report,
Florida State University, 2005

[26] Kato, S.; Yamasaki, N. & Ishikawa, Y. Semi-
partitioned Scheduling of Sporadic Task Systems
on Multiprocessors ECRTS '09: Proc. of the 2009
21st Euromicro Conference on Real-Time Systems,
IEEE Computer Society, 249-258, 2009

10. Glossary

ASPTS: Accelerated Simply Periodic Task Set
BF: Best Fit
Bu: Burchard (criterion)
CTS: Critical Task Sets
DCT: Distance-Constrained Tasks
FF: First Fit
HB: Hyperbolic Bound
LL: Liu/Layland (criterion)
LLconst: Liu/Layland limit criterion
LP Linear Programming
MP: Multiprocessor
NF: Next Fit
PS: Pillai/Shin (criterion)
RBound RBound criterion
RM(S): Rate-monotonic (scheduling)
RMFF Rate Monotonic First Fit
RMGT Rate Monotonic General Tasks
RMST Rate Monotonic Small Tasks
Sr: Specialization with respect to r
TDA: Time Demand Analysis
WCET: Worst Case Execution Time
WF: Worst Fit

Page 12/12

