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Abstract:  The  article  examines  rate-monotonic 
scheduling  (RMS).  The  focus  is  on  efficient 
schedulability tests of high sensitivity.
Accelerated simply periodic task sets (ASPTSs) are 
constructed by shortening task periods in  order  to 
obtain  a  transformed –  simply  periodic  –  task  set 
where each period is an integer divisor of all longer 
periods. The article presents a new heuristic for par-
titioned  multiprocessor  (MP)  scheduling  based  on 
Specialization  with  respect  to  r  (Sr)  and Distance-
Constrained  Tasks  (DCT)  which  use  ASPTSs first 
described by Han and Tyan [9, 10]. They have al-
ready shown the advantage of Sr and DCT over the 
Liu/Layland  (LL)  and  the  Burchard  (Bu)  bound  in 
terms  of  sensitivity.  First,  the  article  compares  Sr 
and DCT as well with other uniprocessor scheduling 
criteria,  both  theoretically  and  empirically.  Next, 
these tests are applied to MP scheduling. Theory is 
followed by a case study and an empirical investiga-
tion with randomised task sets. Related approaches 
are  thoroughly  examined  and  summarised  in  a 
scheme where the central role of ASPTSs becomes 
obvious.
The article shows that Sr and DCT provide a very 
good trade-off  between maximizing  the  scheduling 
test sensitivity (no unnecessary hardware) and min-
imizing the test’s computational complexity (towards 
real-time decisions on schedulability).

Keywords:  rate-monotonic  scheduling,  partitioned 
multiprocessor  scheduling,  sufficient  schedulability 
test, Sr, DCT

1. Introduction

Scheduling in computing deals with assigning jobs to 
processors. Often, equal jobs have to be executed 
periodically,  especially  in  embedded real-time sys-
tems. Then, the periodic task model applies, where 
jobs are instances of a task. Each task is specified 
by a period, a (relative) deadline, an execution time 
and a phase. Jobs are released periodically in ac-
cordance to their task’s period. All jobs must be com-
pleted no later than the respective absolute deadline 
which is the release time plus the relative deadline. 
In  the  most  typical  case,  the  (relative)  deadline 
equals the period and the phase is zero. Then, only 
two  parameters  characterizing  each  task  remain: 
period and execution time. A necessary condition for 
schedulability is that the utilization, the sum of the ra-
tios between execution time and period of all tasks, 
is not greater than the number of processors. Often it 

is  much more difficult  to provide sufficient  or even 
necessary and sufficient conditions for schedulabil-
ity.  The  goal  of  scheduling  is  to  assign  as  many 
tasks  as  possible  to  the  available  processors,  or, 
closer to praxis,  to minimise the number of neces-
sary processors for a given task set.  So, the eco-
nomic objective is  to minimise necessary CPU re-
sources, and, thus, to minimise hardware costs.
Rate-monotonic  scheduling  (RMS)  is  a  widely  ap-
plied scheduling policy for the periodic task model on 
uniprocessor systems. It  enables the scheduling of 
real-time tasks with a processor utilization of at least 
0.69. Often, much higher utilizations of 0.88 [17] or 
even above 0.90 are possible. RMS is the optimal 
static-priority scheduling scheme where task priorit-
ies are assigned fixedly over the entire scheduling. 
The rule of RMS is the shorter the task’s period the 
higher  the  task’s  priority.  Schedulability  analysis 
deals  with  necessary,  sufficient,  or  necessary  and 
sufficient criteria for the determination whether a task 
set is schedulable or not.
The only known necessary and sufficient criteria are 
simulation along the entire hyperperiod of  the task 
set  and  Time  Demand  Analysis  (TDA)  [17].  Both 
methods involve a computational complexity beyond 
O n2 which  is  too expensive  in  many situations. 

Thus, sufficient criteria have been developed in or-
der to obtain partial results much more quickly. The 
best-known  procedure  is  the  Liu/Layland  criterion 
with only linear complexity but a bad performance. 
Frequently,  a false negative answer is given using 
such a simple test. In that, the Liu/Layland test is a 
much too pessimistic one ignoring most of the data 
provided by the respective task set.
Later on, improved linear computational complexity 
criteria like the Hyperbolic Bound [2] or the Burchard 
criterion [3] have been developed. At the other end 
of the scale, quadratic computational complexity cri-
teria like Critical Task Sets [5] and the Pillai/Shin cri-
terion [21, 13] evolved which are sufficient ones, too. 
The advantage of them is that they provide high per-
formance and, thus,  are good approximations of  a 
TDA in many situations.
In 1997, Han and Tyan [9] presented criteria Sr and 
DCT  with  complexities O n log n and O n2 with 
very  good performance (sensitivity  or  true  positive 
rate).  They  are  underrepresented  in  literature  and 
deserve  a  thorough  investigation.  This  will  be 
provided  by  extensive  comparisons  (tables  and 
charts)  both of  theoretical  and practical  (empirical) 
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nature. Finally, a multiprocessor RM scheduling case 
study will be delivered.
It will be shown that DCT is the best known O n2
sufficient criterion for RM schedulability on a unipro-
cessor. Sr behaves slightly worse, but has the ad-
vantage  of  an  only  linear-logarithmic  complexity. 
Hence  both  procedures  are  cost-effective.  It  turns 
out that DCT as a greedy algorithm to find an accel-
erated simply periodic task set with a utilization not 
greater than one is better on the average, while the 
non-greedy algorithm Sr can outperform DCT in rare 
cases. Such an example is discussed.
Next,  amazing  interrelationships  between  different 
uniprocessor  schedulability  criteria  will  be  un-
covered. This systematization will stress the central 
role of ASPTSs in this context. It will be thoroughly 
explained why using transformations of task sets is 
the method of choice for a decision on schedulability. 
In  most  cases,  the  used  transformation  is  an 
acceleration, i.e., to shorten the periods while main-
taining the execution times of the individual tasks, re-
spectively. Here, besides simply periodic task sets, 
roots and fundamental frequencies of the periods of 
the task play an important role and serve as trans-
formation goals.
Partitioned  RM  multiprocessor  scheduling1 is 
strongly  based  on  heuristics  since  an  exhaustive 
search turns out  to  be infeasible  even for  a small 
number  of  tasks.  A  combinatorial  explosion  is  the 
reason. The approach is characterised by a suitable 
combination of a Bin Packing heuristic and a unipro-
cessor schedulability test. A combination of First Fit 
with Sr or DCT will turn out to be superior to other 
known RM MP scheduling heuristics in terms of min-
imizing the number of processors required to sched-
ule a given task set. This is both performed with a 
task set from a problem posed by Jane Liu as exer-
cise 9.3 in [19], p. 390 and randomly generated task 
sets. The adequate generation of random task sets 
is crucial for the informational value of performance 
ratios. So it would be wrong to take only chains of 
multiples as periods since this is a very special con-
figuration  and  not  general  enough.  Thus,  special 
care  will  be  devoted  to  the  random generation  of 
task sets.
As an outlook on future research, the combination of 
different uniprocessor schedulability tests and the in-
vestigation of runtime behaviour of the compared cri-
teria will  be suggested. The latter one is important 
since  a  purely  theoretical  comparison  of  the com-
plexities may not be appropriate to praxis. Here, be-
haviour with a lower number of tasks and the opera-
tions necessary to execute per step are important, 
too, for runtime evaluations. This goes up to  worst-
case  execution  time  (WCET) analysis  which  is  a 
cornerstone of real-time analysis.

1 The alternative is global scheduling. Here, the optimal 
algorithms PFAIR and LLREF are better in theory 
(worst case), ignoring runtime overhead [24, 25, 26].

2. Methodology

2.1 System model

There are given n pre-emptive, independent, period-
ic  real-time  tasks T={T 1 ,T 2 , .. ,T n} with
T i= pi ,e i where pi is  the  period  and e i is  the 

execution time. The deadline is assumed to be equal 
to  the  period,  i.e., ∀ i : pi=d i .  Additionally, 
∀ i : 0e i≤p i should  hold.  The  individual  utiliza-

tions ui=ei / pi sum  up  to  the  total  utilization

u=∑
i=1

n

ui . The challenge is to schedule these tasks 

on  a  set  of m identical  processors
P={P1 , P2 , .. , Pm} .  The  task  priorities,  denoted 

by Prioi , shall be assigned statically and in a rate-
monotonic way, the shorter the period the higher the 
priority.  Equal period ties are broken arbitrarily, but 
fixed2. Further, we restrict our considerations to the 
simplest case of partitioned schemes which doesn’t 
allow any migration. The last two restrictions imply 
that we consider a (1,1)-restricted MP scheduling ac-
cording to the terminology introduced in [4]. The re-
maining  problem  is  to  map  tasks  to  processors 
where  they  can  be  scheduled  following  the  rate-
monotonic  uniprocessor  scheduling,  respectively. 
We will  consider  only  off-line  algorithms where  all 
task parameters are initially known.
There are two approaches concerning the number of 
processors.  First,  this number m can be fixed,  and 
we obtain a decision or feasibility problem whether 
the task set can be feasibly scheduled. On the other 
hand,  the  minimization  problem with  the  objective
mmin for a given set of n tasks could be raised. 

We will focus on the minimization problem.

2.2 Two scheduling elements

A strict  distinction between the allocation algorithm 
and the uniprocessor schedulability condition is sug-
gested. Both of them contribute to the performance 
as well as to the complexity of the heuristics. In gen-
eral, a trade-off between the complexity and the per-
formance can be expected.

2.3 Allocation algorithm

The problem is related to the Bin Packing Problem. 
Here, the task is to find an m -partition of a set of n
items so that the sum of item sizes in each  bin is 
bounded by a  constant.  The decision problem,  cf. 
2.1, is NP-Complete while the minimization problem 
is NP-Hard.
For the decision problem, a brute-force search re-
quires S n ,m cases to consider. It  is the number 
of  ways  to  partition  a  set  of n items  into m non-

2 It is convenient to use the task index in order to break 
the ties.
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empty  subsets,  the  Stirling  number  of  the  second 
kind which is exponential in n . The minimization has 
to  check Bn different  cases  where 

Bn=∑
m=0

n

S n , m is the n -th Bell number, see [8], 

p. 258f.  and  p. 373.  Of  course,  in  practice  certain 
odd partitions can be excluded initially because of 
the size distribution of items, but anyway both prob-
lems  require  an  exponential  number  of  cases  to 
check what is impractical or even impossible for a 
greater n ,  the  number  of  items.  As  the  notation 
already suggests,  in MP scheduling,  the items are 
the tasks and the bins are the processors.
In order to cope with the minimization,  there have 
been suggested various heuristics. Typical ones are 
Next Fit (NF), First Fit (FF), Best Fit (BF) and Worst 
Fit (WF). According to FF, items are allocated to the 
first bin it fits. In this article, we only use FF, making 
the allocation algorithm a constant. Our variable is 
the uniprocessor schedulability condition.

2.4 Uniprocessor Schedulability Condition

Time Demand Analysis  (TDA):  TDA introduced by 
Lehoczky et al. [17] is beside simulation the only ne-
cessary and sufficient condition for RM schedulabil-
ity. One has to check for a fixed point of the iteration 
of processing time demand which must be not great-
er than the deadline of the task (1), a computation-
ally  beneficial  iterative  method  given  by  Audsley 
et al. [1]. Of course, this has to be done for all tasks 
as  the  example {5,2  ,7,4  ,35,1} shows.  It  is 
not sufficient only to check the lowest priority task. 
Only the probability of a deadline violation is largest 
for  it  since  it  can  be  disturbed  by all  other  tasks. 
Sometimes, this fact is not considered correctly. So, 
Zapata  et al. claim commenting an example: “Since 
the lowest  priority  task is  schedulable  [..]  we  con-
clude that tasks [..] are also schedulable.” [23]

t i
l1=e i ∑

j : Prio jPrioi
⌈ t j

l

p j ⌉e j

t i
0=e i

∀ i∃l :t i
l1=t i

l≤ pi=d i

(1)

TDA has a pseudo-polynomial time complexity. More 
precisely,  it  can  be  given  as O rn2 where
r=max pi/min pi ([19], p. 137).

Pillai/Shin criterion (PS): Pillai and Shin [21, 13] sug-
gest to adapt TDA to obtain a lower-complexity, only 
sufficient  condition.  The iteration  (1)  considers  the 
entire  interval [0 ;d i=p i ] for  each task as it  looks 
for  the  fixed  point  which  is  the  (worst  case)  pro-
cessing time demand of the task. As a pessimistic 
approach we consider the maximum number of pre-
emptions by a higher priority task. This is the period 
ratio  rounded  up.  Multiplying  it  with  the  execution 

time  of  the  particular  higher  priority  task  and 
summing up over all such tasks gives (2).

∀ i : ei ∑
j :Prio jPrio i

⌈ p i

p j ⌉e j≤p i=d i (2)

Computational complexity is O n2 .
Liu/Layland criterion (LL): Liu and Layland gave in 
their classical paper [18] a sufficient upper bound of 
RM schedulability depending only on the number of 
tasks to schedule (3).

u≤n  n2−1=L n  (3)

Two minor mistakes in the proof were detected and 
corrected by Devillers and Goossens [6]. Time com-
plexity is linear since utilization has to be summed 
up over all tasks.
Liu/Layland limit criterion (LLconst): In order to make 
this a constant as it is required for a complete ana-
logy to the Bin Packing Problem, cf. 2.3, the infimum 
limit of L(n) is considered (4).

u≤ln 2 (4)
Again, time complexity is linear.
Hyperbolic Bound (HB): Instead of considering only 
the total utilization u , it might be a good idea to in-
clude the individual utilizations u i [2]. This approach 
resulted in condition (5), which is better than LL. The 
more heterogeneous the utilizations are distributed, 
the better is the sensitivity of the criterion.

∏
i=1

n

ui1≤2 (5)

Computational complexity is linear.
Burchard criterion (Bu): Following [3], we define

S i=log2 p i−⌊ log2 p i ⌋
for each task and build

=max S i−min S i

If 1−1/n the condition is

u≤n−12


n−1−121−−1=B n , (6)

else, i.e., ≥1−1/n , the condition is just (3).
It  has  been  shown  that  B n ,≥L n  always 
holds. In that way, Bu is better than LL. Time com-
plexity is linear.
RBound: In 2003, Lauzac et al. [16] proposed a new 
criterion. In order to apply it, the task set has to be 
transformed  first  using  an  algorithm  called 
ScaleTaskSet which transforms T into T0 by stretch-
ing each period and execution time by an appropri-
ate power of 2. The goal is to have all new periods 
between half the maximum period and the maximum 
period.  ScaleTaskSet includes a sorting by periods 
in non-decreasing order, but this step is not neces-
sary for the criterion itself. Then, we define
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r=max p ' i−min p' i (7)
The condition is then

u≤n−1r
1

n−1−12
r
−1 (8)

Time complexity is linear and not log-linear as stated 
in [16] since the sorting in the original algorithm can 
be substituted by a min-max search loop. Only these 
values are evaluated in the further algorithm and the 
definition of r .
Critical Task Sets (CTS): Chen et al. [5] proposed a 
transformation of the periods to a critical task set fol-
lowing the ideas of Liu and Layland in their proof of 
the LL bound [18].  First,  the periods are sorted in 
non-decreasing  order.  Next,  incremental  subsets 
starting from 2 up to n periods are considered. Such 
a subset is then transformed according to

p ' j=p j⌊ pi

p j ⌋ (9)

with i as the outer loop index and j as the inner loop 
index. This results in a maximum period ratio no lar-
ger than 2 . Then, the construction of a critical task 
set based on [18] with a calculation of the improved 
utilization bound is possible.

(10)
The utilization must be no larger than the minimum 
of the critical task set utilizations of the incremental 

subsets and (from the necessary condition) 1 . Com-
putational complexity is O n2 .
Summary and Anticipation: In order to give a sum-
mary we provide a comparison of the different uni-
processor schedulability conditions in Table 1 includ-
ing an anticipation (printed in italics) of our proposed 
conditions introduced later in Section 3.

3. Special task sets

3.1 Accelerated task sets

A task  set T={T 1 ,T 2 , .. ,T n} can  be  transformed 
into  an  accelerated  task  set T ' by  maintaining  all 
execution times e ' i=ei and reducing or maintaining 
all  periods p ' i≤pi .  Thus,  the  new  utilization

u '=∑
i=1

n e ' i

p ' i
≥∑

i=1

n e i

pi
=u is not less than the original 

one. Note that the case of equivalence between ori-
ginal and newly constructed periods is included.
This allows us to give the following theorem.
Theorem 1 (RM schedulability by accelerated 
task sets)
Given a task set T it is schedulable by RM if there is  
an accelerated task set T ' which is schedulable by 
RM.
For a proof, see [9].
3.2 Simply periodic task sets

A task set T={T 1 ,T 2 , .. ,T n} is called simply peri-
odic if and only if there is an integer ratio (non-negat-
ive) between the periods of each pair of tasks selec-
ted from T . The condition can be written as (11).
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condition n u ui pi e i specifics complexity guaranteed equal to
or better than

LLconst x pure bin packing O n

LL x x most famous O n LLconst

HB x O n LL

Bu x x x O n LL

RBound x x x transformation O n LL

PS x x transformation O n2

CTS x x transformation O n2 LL

Sr x x transformation O n log n Bu, LL

DCT x x transformation O n2 TDA for n=2

TDA x x iteration O rn2 (all)

Table 1: RMS uniprocessor schedulability conditions, r defined in (7)

u≤min{∑j=1

i−1

p' j1− p' j

p' j
2p '1− p' i

p ' i
∣i=2..n}∪{1}



∀ i , j∃c i , j∈ℕ:
max {pi , p j}
min{pi , p j}

=c (11)

The  intention  behind  extracting  such  special  task 
sets  is  to  fit  every  task  completely  into  all  tasks 
which have a larger period.
Note that, e.g., the task set {3,1 , 6,1 , 9,1} is 
not simply periodic although there is a great regular-
ity in the periods. Obviously, 9 is not an integer mul-
tiple of 6 .  The pattern behind with a step-wise in-
crease by the minimal period is only appropriate for 
task sets of size 2 . We can repair the fault and ob-
tain {3,1 , 6,1 , 12,1} as a valid example for a 
simply periodic task set.
On the other hand, one could be tempted to restrict 
the pattern to {a⋅bi , ei} with  b∈ℕ . It is obvious 
that a=1.5 and b=2 in the previous valid example. 
In general, a ratio c  i , j=b∣i− j∣ must be an integer 
following  that  construction.  Considering  a  task  set 
like {3,1 , 15,1 ,30,1} which  doesn’t  fit  into 
the above given pattern clarifies that the approach 
was too  restrictive.  Relaxing  the  condition  we can 
state the following lemma:
Lemma 1 (Characterization of simply periodic 
task sets)
A task set T={T 1 ,T 2 , .. ,T n} is simply periodic if  
and only if an (index-dependent) integer ratio exists  
for all direct neighbours in the non-decreasingly  
ordered list of task periods.
A proof in forward direction is easy since the ratio is 
directly given by definition (11). Assuming a non-in-
teger ratio between two task periods leads immedi-
ately to contradiction to definition (11). In backward 
direction,  we  have  to  construct  the  period  ratio 
between two arbitrary periods and to show that this 
ratio is always an integer. The ratio is the product of 
all neighbour ratios along the unique path from min-
imum to maximum period. Since ℕ is closed under 
multiplication, it is indeed a non-negative integer. A 
test  based on Lemma 1 is O n log n .  Sorting is 
the dominating step, the check for integer ratios is 
only of linear complexity.
It  turns out  that  the pattern {a⋅bi , ei} can be re-
garded as a special case with a constant neighbour-
ing period ratio of b . The misleading thought in the 
first attempt was the assumption that there should be 
a  constant  integer-additive  relationship  between 
neighbouring periods, but it has to be a variable in-
teger-multiplicative one. The second approach is – in 
that  terminology  –  a  constant  integer-multiplicative 
one and too specific.
Intuitively, it might be clear that the zero cut-off prop-
erty  mentioned in the beginning of  this  subsection 
enables for a rate-monotonic scheduling without idle 
processor time which lifts it to the same performance 
as EDF scheduling under maintenance of its simpli-
city. This fact is expressed in the following theorem.

Theorem 2 (RMS on a simply periodic task set)
A system consisting of a single simply periodic task  
set is schedulable by RMS if and only if u≤1 .
A proof sketch is given in [19], p. 129f.
3.3 ASPTSs: Sr and DCT
As the naming already suggests, an ASPTS has to 
be conform to both conditions (3.1 and 3.2) at the 
same time. Such a s ways exists to a given task set, 
but is not unique.
Lemma 2 (Accelerated simply periodic task set)
For an arbitrarily given task set T={T 1 ,T 2 , .. ,T n}
, there always exists an ASPTS. It is not unique.
This  can  be  shown  easily  by  construction.
T '={T '1 ,T ' 2 , .. ,T ' n}  with  ∀ i : p' i=inf i {pi}  

fulfils  the  conditions  since  all  periods  are  not  in-
creased and a common period means an integer ra-
tio of 1 for all possible pairs.
A straightforward step is it to combine Theorems 1 
and 2 to our main theorem:
Theorem 3 (RM schedulability of ASPTSs)
In order to show RM schedulability of a given task  
set T , it is sufficient to show that there is an acceler-
ated simply periodic task set T ' with u '≤1 .
A proof is given in [9]. Theorem 3 as a sufficient con-
dition offers a new way to prove RM schedulability 
as  suggested  by  [9,  10].  It  suffices  to  look  for 
ASPTSs  and  to  minimise  the  total  utilization.  The 
new test is then given by (12).

∃T '={T '1 ,T '2 , .. ,T 'n}:∑
i=1

n e ' i

p ' i
≤1

subject to
∀ i : p ' i≤ pi

∀ i : e ' i=e i

and (11)

(12)

Note that  the test  can be cancelled as soon as a 
transformed  task  set  with  a  feasible  utilization  is 
found. If there is such a u '≤1 , the original task set 
is schedulable by RM, if not we cannot make a claim 
on schedulability by RM3. For the purpose of finding 
candidate  ASPTSs  with  low  utilizations,  two  al-
gorithms coined Sr and DCT4 were proposed in [9, 
10]. Sr is a specialization described as well in [19], p. 
414ff. and has its origin in pinwheel scheduling [11]. 
While Sr accelerates to a task sets obeying the pat-
tern {a⋅bi , ei} with b=2  (discussed in 3.2), DCT 

3 Of course, this can be checked by TDA or a schedul-
ing simulation both of which are exact (necessary and 
sufficient) tests.

4 Sr means Specialization with respect to r which is fur-
ther explained in [10]. DCT probably means Distance-
Constrained Tasks. Definitely, it has nothing to do 
with the Discrete Cosine Transform known from sig-
nal and image processing.
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uses  individual  ratios  according  to p ' j=p i/⌈ pi

p j ⌉
and p ' i=⌊ pi

p j ⌋ p j for pip j which  are  the  locally 

optimal transformations.
This  greedy approach will be discussed in 3.4. The 
computational  complexity  of  tests  based  on  these 
two algorithms is O n log n and O n2 .  Sr uses 
a sorting5 and precalculation of partial  sums which 
enables  for  an  iterative  calculation  of  utilizations 
avoiding a double loop with complexity O n2 . This 
is further explained in [9] and [10]. For a better un-
derstanding of  the two algorithms, see example in 
Table 2.  The best results can be obtained using a 
combination of both algorithms. A task set is marked 
RM schedulable  if  one  of  both  algorithms  Sr  and 
DCT is able to find a task set T ' with u '≤1 .  The 
complexity  of  this  approach,  coined Sr∨DCT , is
O n2 .

3.4 Theoretical Performance of Sr and DCT

Theorem 4 (Theoretical Performance Sr/DCT)
A test based on Sr is better than LL and better than  
Bu since each task found to be RM schedulable by  
LL or by Bu can also be found to be schedulable by  
Sr [9, 10]. DCT is necessary and sufficient for the  
case of n=2  [9].
There are task sets not passing LL or Bu tests but Sr 
as will turn out by example in Section 4, so the first 
part describes a proper relationship. The second part 
of the theorem makes DCT equivalent to TDA in the 
case of  n=2 . Note that this results in another ad-
vantage over the compound algorithm Rate Mono-
tonic  General  Tasks  (RMGT)  [3]  which  uses  Rate 
Monotonic Small Tasks (RMST) [3] based on a sim-
plification of  Bu for small  tasks and TDA for large 
tasks.  Such  a  quite  complicated  heterogeneity  in 
testing is no longer necessary by using DCT. It can 
be shown that DCT is equivalent to the necessary 
and sufficient test given as Theorem 32.9 in [7]. The 
condition for schedulability with n=2  and p1≤p2  
is given there as

e2≤⌊ p2

P1 ⌋ p1−e1max{0, p2−⌊ p2

P1 ⌋ p1−e1}
(13)

This interrelationship stresses the prime importance 
of the given approach. As an example, we test the 
schedulability  of  task  sets  of  the  kind
{5,e1 ,7,e2} .  The  possible  pairs  of e1 and e2

resulting in a schedulable task set can be visualised 
graphically, see Figure 1.

5 Sorting is O n log n .

The filled region denotes the solution set. The linear 
function e2=5−e1 represents  the  utilization  limit  if 
the  second  task  is  accelerated  to  a  period  of 5 . 
Second, the first task could be accelerated to a peri-
od  of 3.5 resulting  in  an  acceleration  limit  of
e2=7−2 e1 .  Since  the  existence  of  one  ASPTS 

suffices according to Theorem 3, a union of both tri-
angles gives the solution set.  Note further that the 
PS  bound  (2)  only  considers e2≤7−2 e1 as  con-
straint omitting the other possibility e2≤5−e1 in the 
OR term. Thus, the dark grey region represents task 
sets detected schedulable  by DCT but not  by PS, 
characterizing DCT superior to PS. For n=2 , DCT 
is always equal to or better than PS since the PS 
constraint is relaxed by an additional OR term.
Finally,  we  want  to  point  out  that  DCT pursues a 
greedy strategy  when constructing the accelerated 
task sets. It will turn out that this approach is (in the 
average  case)  superior  to  the more restricted one 
only  using  the  simply  periodic  task  pattern
{a⋅bi , ei} introduced  in  3.2  where,  additionally,
b=2 , which corresponds to Sr. Anyway, there are 

rare cases where the greedy DCT is worse than Sr. 
An example is the task set {2,1 , 11,2 , 17,4 } , 
see  Table 2.  DCT  accelerates  it  to 

{2,1 , 10,2 , 10,4 } , {
11
6

,1 ,11,2 ,11,4}

and {1.7,1 ,8.5,2 ,17,4} ,  all  of  them  not 
meeting the utilization bound of 1. Sr transforms the 
task  set  to  {2,1 , 8,2 , 16,4 } ,
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Figure 1: Task sets of the kind {5,e1 ,7,e2}  
detectable by DCT (light and dark grey) and PS 
(only light grey) in the first quadrant of the e1e2

plane



{ 11
8

,1 ,11,2 ,11,4}  and

{ 17
16

,1 , 17
2

,2 , 17,4} .  Choosing the first task 

as pivot results in a utilization of exactly 1 . Thus, the 
original task set is RM schedulable6. In this particular 
case, it is better to accelerate T 2 more because the 
so  enabled  lower  acceleration  of T 3 results  in  a 
lower total utilization.

original Sr DCT

i pi ei p ' i p ' i p ' i p ' i p ' i p ' i

1 2 1 2 11/8 17/16 2 11/6 1.7

2 11 2 8 11 8.5 10 11 8.5

3 17 4 16 11 17 10 11 17

u 0.917 1 1.273 1.925 1.1 1.091 1.059

Table 2: A task set detected schedulable by Sr,  
but not by DCT; pivot periods are written in  
coloured background, utilizations are rounded 
to 3 decimal places

4. Case study

As a first test, we want to apply the suggested ap-
proach to a problem raised as exercise 9.3 in [19], p. 
390. Ten asks with parameters given in Table 3 shall 
be scheduled on a multiprocessor system. The obvi-
ous question is for the minimal number of processors 
necessary. Following the sub-tasks given by [19], p. 
390 both with FF-LL and RMST, a number of pro-
cessors of m=4 is obtained. This is not the optimal 
number of m=3 .  Clearly,  with a total utilization of
u≈2.47 ,  a schedule  with  only  two processors is 

impossible. By running the heuristics, it turns out that 
only FF-TDA, FF-DCT, FF-PS, FF-CTS and FF-Bu7 

achieve  the  optimal  number  of  3.  All  other 
approaches find the sub-optimal solution of m=4 . 
Here,  the border  line runs almost exactly  between 
the O n and the higher complexity methods. Only 
the more complex criteria and Bu are able to obtain 
the optimal value of m=3 .  This suggests strongly 

6 We can also consider other bases than b=2 for the 
specialization. The average performance becomes 
worse [7], but in rare cases, they can be better. Note 
that, e.g., {2,1 , 20,2 , 55,20} can be detected 
schedulable by Sr with b=3 , but neither by Sr nor by 
DCT. So, consecutive tests with different bases can 
improve the result. On the other hand, the gain might 
be low and not worth the effort in most cases.

7 Note that FF-Bu is an improved version of RMST 
since it uses the Bu criterion in its original form in-
stead of the simplified one used by RMST.

that  it  is  worth  not  only  to  use  linear  complexity 
heuristics in MP scheduling.

i 1 2 3 4 5 6 7 8 9 10

pi 7 21 29 49 64 66 160 235 260 450

ei 2 3 9 15 20 16 32 72 25 120

Table 3: Parameters of 10 periodic tasks for  
multiprocessor scheduling
Further investigations shall  consider the number of 
partitions  leading  to  a  schedulable  configuration 
found by the different heuristics. The most general 
approach giving exactly the possible partitions and 
so the optimal number of processors, too, is to com-
bine the exact methods of both scheduling elements, 
cf. 2.2. Thus, a brute-force search with TDA will be 
the reference. The number of cases to consider is 
the 10th Bell number which is 115975 , cf. 2.3. This 
is possible with a today’s computer in a reasonable 
amount of time. Anyway, we want to limit the search 
space and then compare the performance of the dif-
ferent algorithms in the specified parts of the search 
space. Since we already know that the optimal value 
is m=3 , this part close to the border of impossibility 
to schedule is the most interesting one. There are 
still S 10,3=9330 possibilities,  cf.  2.3.  Among 
them,  we  want  to  consider  three  combinations  of 
numbers of tasks assigned to each of the three pro-
cessors: 4−3−3 , 4−4−2 and 5−3−2 .  They 
contain 2100 , 1575 and 2520 cases,  respectively. 
In  Table 4,  a  comparison  of  the  different  unipro-
cessor  schedulability  conditions  in  relationship  to 
TDA as the reference is given. Performance has to 
be seen as sensitivity or true positive rate.

4−3−3 4−4−2 5−3−2

TDA 763 70 9

Sr∨DCT 470 61.6% 12 17.1% 0 0.0%

DCT 462 60.6% 11 15.7% 0 0.0%

Sr 268 35.1% 2 2.9% 0 0.0%

CTS 385 50.5% 22 31.4% 0 0.0%

PS 433 56.7% 17 24.3% 7 77.8%

HB 0 0.0% 0 0.0% 0 0.0%

Bu 2 0.3% 0 0.0% 0 0.0%

RBound 1 0.1% 0 0.0% 0 0.0%

LL 0 0.0% 0 0.0% 0 0.0%

LLconst 0 0.0% 0 0.0% 0 0.0%

Table 4: Performance of different  
uniprocessor schedulability conditions on a  
set of ten tasks
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Clearly,  the  conditions Sr∨DCT ,  DCT,  Sr,  CTS 
and PS outperform all other conditions significantly. 
Among them, the combination of Sr and DCT, which 
requires the highest effort, delivers the best perform-
ance in the most typical 4−3−3 case. But the ad-
vantage is only marginal, so using DCT might be suf-
ficient.  In  the  exotic  cases 4−4−2 and 5−3−2 , 
CTS and PS outperform the suggested approaches. 
This  is  interesting,  but  should  not  be  overvalued 
since the sample size is very small. Remarkable is 
the  breakdown  of  almost  all  known  only  sufficient 
conditions in the particularly difficult case 5−3−2 . 
An  exception  is  PS  which  detects 7  of 9 correct 
partitions.  It  can be seen as an outlier.  Results  in 
Section 5 will deliver more evidence.

5. Simulation with randomised task sets

In the following, we will present two simulation res-
ults,  one  for  uniprocessor  scheduling  and  one  for 
multiprocessor scheduling. An important step in both 
cases is  the generation  of  random task sets.  The 
core of such a function is pseudo random number 
generation. In order to obtain a uniform distribution it 
is wrong to use a modulo operator since this opera-
tion restricts the result to only the lower value bits. 
Instead, scaling by division should be used.

5.1 Uniprocessor
Tasks are randomly given an integer execution time 
in  [1,10] (uniform). The period results from adding 
an integer uniform distribution in [1,100] to the exe-
cution time. The target is n=10 and u=0.70..0.96 . 
So,  the  total  utilization  is  incremented  in  steps  of
0.02 .  If  the  target  utilization  is  reached  or  sur-
passed with less than 10 tasks this set will be omit-
ted. Otherwise, the execution time of the 10th task is 
reduced  in  order  to  reach  the  respective  target 
utilization exactly. 10,000 task sets exactly meeting 
the requirements for n and u are checked for  each
u ,  where  for u=0.96 only 100 task  sets  are 
checked. The reason is that it is much more unlikely 
that  they are RM schedulable.  The results can be 
seen in Figure 2.
We can see that higher utilization task sets are more 
difficult to recognise as schedulable. This is true for 
all  investigated  uniprocessor  schedulability  condi-
tions.  The  slight  increase  from 0.94 to 0.96 is  not 
significant since the sample size of 100 , see above, 
is not convincing. Note that LL breaks down already 
right  above u=0.70 since  the  limit 10 21/10−1 is 
between 0.70 and 0.72 .  All  three  newly  proposed 
conditions are better than the established ones in all 
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Figure 2: Performance of different uniprocessor schedulability conditions on randomised sets of ten  
tasks; 10,000 simulations per u value; Sr + DCT curve is only slightly above the DCT curve
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cases. Best sensitivity delivers Sr∨DCT .  But the 
improvement compared to pure DCT is marginal and 
doesn’t pay off the higher effort. So, DCT turns out to 
be the condition of choice. Note that both CTS and 
PS  as  the  other  conditions  with O n2 complexity 
besides DCT reach medium sensitivity.  Anyway,  a 
serious drawback of PS is its lack of a guarantee, cf. 
Table 1, compared to LL. So, for low utilizations PS 
is worse than the linear complexity LL condition. On 
the other hand, CTS includes a guarantee, but ex-
hibits worse behaviour compared to DCT or Sr. Sr 
shows a good performance related to its computa-
tional complexity of O n log n .

5.2 Multiprocessor
For the multiprocessor case, the target utilization is 
2.5 . In order to enable this, the period results here 
from adding an integer uniform distribution in [1,30]
to the execution time. For all criteria, FF was used as 
allocation algorithm. In the cases of Bu and RBound, 
a processing of the task set has been conducted be-
fore applying FF. For Bu, tasks are sorted by the S 
values,  cf.  2.4.6,  in  non-decreasing  order.  For 
RBound, the procedure ScaleTaskSet, cf. 2.4.7, in-
cluding a sorting of the transformed set with non-de-
creasing periods  is  applied.  Such a preprocessing 
further improves the performance of the algorithms 
being opponents to the new ones, and, thus, makes 
the competition even harder.
The value m is the result of the minimization prob-
lem. 100,000 task sets have been checked by each 
heuristic, respectively. Figure 3 shows the results.

Note that the m value of 5 occurs so rarely that it is 
almost  invisible  in  the bars CTS,  PS,  HB and LL. 
Clearly, again the three new heuristics based on the 
new criteria outperform the established ones signific-
antly. While they peak, together with the exact uni-
processor schedulability condition, at m=3 , the oth-
er ones peak at m=4 . This means that they would 
waste  an  entire  processor  in  most  cases.  Again,
Sr∨DCT  has  no  great  advantage  compared  to 

DCT itself. Thus, we recommend to use DCT.

6. Related Work

Sr and DCT are underrepresented in literature. While
the article by Zapata and Alvarez [22] not even men-
tions the great work of Han and Tyan, Lauzac et al. 
[16]  shortly  discuss  their  approach,  but  claim that 
“[..]SRFF  is  always  between  that  of  RMFF  and 
RBound[..]” [16] and then no further consider it. Za-
pata et al. came in [23] to the result that DCT and Sr 
yield the best performance among all sufficient tests 
they investigated.
In [15], Kuo et al. claim to have found a polynomial-
time schedulability test with higher performance and 
efficiency. The idea is to use the number of roots in-
stead of the number of tasks in the LL formula. A 
task is called a root if there is no other process with 
a larger period that is an integer multiple of the ori-
ginal period. There are task sets for which their so 
called  Root-Based  test  recognises  schedulability 
where all other tests collapse. But the problem is that 
this  is  only  possible  for  very  artificial  task sets  as 
they have been used in their “simulations”. Only in 
case of task sets with a single root the bound be-
comes 1.0 . In all other cases, it is almost as bad as 
LL since the most typical number of roots is close to 
the number of tasks itself. E.g., for the task set given 
in  Section 4,  there  are 9 roots.  Thus,  the  Root-
Based test with O n2 complexity [15] is in the aver-
age case much worse than the proposed tests. An il-
lustrative  example  is  the  task  set
〚5,2 , 7,4  ,35,1〛 . At first, it seems to be RM 

schedulable since there is one root and utilization is 
exactly one. The problem is that the precondition in 
Theorem 4 in [15] is not fulfilled. The algorithm has 
to be done in an iterative or recursive manner. In the 
example,  the  middle  priority  task  doesn’t  meet  its 
deadline. On the other hand, this property makes the 
approach suitable for on-line schedulability [15].
Similarly, Kuo and Mok [14] suggested a schedulab-
ility condition based on the number of fundamental 
frequencies.  In  the  division  graph,  which  is  the 
Hasse diagram induced by the half order relationship
pi∣p j , it coincides with the number of fundamental 

chains. Again, this number is then put into the LL for-
mula. An algorithm finding the number of fundament-
al frequencies with a complexity of O n5/2 is given 
in  [14]  by Kuo and Mok.  Chen  et al. gave  an im-
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Figure 3: Results of the MP scheduling minim-
ization problem (value of m) for randomised 
task sets with u = 2.5 and n = 10 using FF with  
different uniprocessor schedulability condi-
tions; Bu and RBound apply a preprocessing 
concerning the order of the tasks
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provement to O n2 complexity in [5] with the addi-
tional advantage that their  Algorithm 2 can obtain a 
smaller k value if a root is smaller than a leaf. The 
problem  is  that  these  algorithms  result  in  a  high 
sensitivity only for sets with just one fundamental fre-
quency. Note that this means a simply periodic task 
set which corresponds to a very restricted part of the 
parameter space.
The common problem of  the criteria based on the 
number of roots or the number of fundamental fre-
quencies [14, 15] is that they do not transform the 
task set and so remain too specific. Thus, they are 
not able to reach good average sensitivity on ran-
dom task sets. The argument of the authors that har-
monic rates are typical e.g. for multimedia processes 
[15] trivialises the problem. A configuration with just 
one harmonic chain can be detected without any ad-
vanced algorithm in most cases.
As a consequence, it might be a good idea to com-
bine the basic  idea of  the Root-Based test  with  a 
transformation to accelerated task sets. But it turns 
out that in case of assuming only one root, which is 
then the task with the longest period, such a “test” 
would not be sufficient. The reason is that deadline 
violations in RMS can not only occur in the lowest 
priority task. Instead, all tasks8 have to be checked 
for  possible  deadline  violations  in  the  accelerated 
task set with only one root. This leads directly to PS, 
see (14). T i corresponds to a root task. The denom-

inator p i/⌈ p i

p j ⌉ is the reduced period of the appro-

priate accelerated task T j and is closely related to 
the term used in DCT for shorter period tasks. The 
difference is that in DCT, the shortening is applied it-
eratively while here, it is applied related to the root 
task. This becomes apparent by again considering 
the task set {2,1 , 11,2 , 17,4}  given in 3.4. It 
will  be  accelerated  to {17/9,1 ,8.5,2 ,17,4}  
with  a  utilization  of  exactly 1 and,  thus, T 3 experi-
ences no deadline violation. Here, T 2 is not distorted 
by T 1 since  it  can  be  accelerated  to
{11/6,1 , 11,2 } with  a  utilization  less  than 1 . 

Thus, not only Sr, see 3.4, but also PS is able to de-
tect {2,1 , 11,2 , 17,4 } as RM schedulable.
So, PS is closely related to DCT which highlights the 
central role of ASPTSs.

8 The only exception is the highest priority task which 
always will be scheduled at the beginning of its peri-
od.

∀ i :e i ∑
j : Prio jPrioi

e j

p i

⌈ p i

p j ⌉
≤1⇔

∀ i : ei ∑
j :Prio jPrio i

⌈ p i

p j ⌉e j≤p i=d i

(14)

The so called Algorithm 3 by Chen et al. in [5] with a 
complexity of O n3 is an improvement of CTS. As a 
preprocessing, periods which are integer divisors of 
other periods and other ones fulfilling an advanced 
condition are eliminated. According to [23], the per-
formance of this algorithm is in the range of DCT and 
Sr, but it can outperform them only in case of small 
maximum task utilizations ≤0.5 . A serious draw-
back  is  the  high complexity.  Often,  a  TDA will  be 
preferable.
Similar to CTS, Park  et al. [20]  gave  a linear pro-
gramming (LP) approach in order to obtain a task set 
specific  utilization  bound,  too.  A  total  utilization 
below the LP bound means that at least one of the 
constraints must be violated. Hence, for a single de-
cision on schedulability, it is sufficient to test all given 
constraints. A sole violation entails schedulability of 
the task set. By not finding such a violation, nothing 
can be said on feasibility.  The criterion is sufficient 
but not necessary. The approach is closely related to 
PS. The set of constraints could be reduced by Hu 
and Quan [12]. They claim that their best algorithm 
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Figure 4: Relationships between different uni-
processor scheduling criteria



can outperform DCT for larger values of n . But they 
have to admit that DCT is much better in terms of 
running  time,  ca.  one  order  of  magnitude  in  their 
tests. Their constraints correspond to a generaliza-
tion of PS. Instead of only checking with the period
pi of the incremental  lowest  priority task,  acceler-

ated periods ⌊ p i

p j ⌋ p j are tested, too. Finally, all oth-

er tasks are accelerated related to the accelerated 
lowest priority task. The idea of the Root-Based test 
is exploited as done in PS. Since PS is O n2 and 
the extension is an additional loop over tasks, this 
approach has a computational complexity of O n3 , 
and is, thus, not a direct competitor of DCT or Sr. 
E.g.,  the  schedulability  of  the  task  set
{2,1 , 11,2 , 17,4 } given in 3.4 can be detec-

ted with their LP approach. It accelerates the set to
{2,1 , 8,2 , 16,4 } as  Sr  does.  Thus,  the  ap-

proach  seems  to  be  conceptually  interesting  and 
reaches  a  very  good  performance  at  the  price  of 
much  higher  complexity  and  running  times  than 
Sr/DCT.  In  the  case  of n=2 ,  it  turns  out  to  be 
equivalent to DCT and, thus, to be a necessary and 
sufficient criterion. LP can be seen as filling a gap 
between PS and TDA. Summing up, see Figure 4.

7. Conclusions

We came to the result that DCT is the best known 
O n2 sufficient criterion for RM schedulability on a 

uniprocessor. Our simulations suggest that multipro-
cessor  scheduling  heuristics  based  on  Sr  or  DCT 
outperform  all  other  heuristics  under  investigation. 
With  a  computational  complexity  of  O n log n
and O n2 , the criteria are less complex than TDA 
which is pseudo-polynomial. On the other hand, they 
are more complex than classical criteria with linear 
complexity. A serious competitor is the Critical Task 
Set test. Anyway, it turned out to be worse than Sr 
and worse than DCT. The Pillai/Shin test with a com-
plexity of O n2 like DCT provides no guarantees at 
all  and  exhibits  in  most  cases  a  worse  sensitivity 
than DCT. In a concrete run-time comparison, DCT 
is  often  faster  than  the  linear  complexity  criteria 
RBound or the Burchard criterion since they include 
several loop cycles, making the constant belonging 
to O n high,  and  use  expensive  operations  like 
power and logarithm extensively. This is also true for 
Sr.  Thorough  investigation  of  runtime  behaviour 
could be dealt with in future research.
Interrelationships  between  ASPTSs  and  the  con-
cepts of the Root-Based test and the Pillai/Shin test 
have been pointed out. The connection between the 
LP approach of Hu and Quan, DCT, and the Root-
Based test  has  been given explicitly.  An extensive 
study  of  related  work  has  shown  that  a  lot  of 
approaches are closely related to ASPTSs.

DCT delivers an outstanding performance at a rea-
sonable  practical  run-time.  Additionally,  DCT 
provides a necessary and sufficient criterion for task 
sets of size n=2 making it  as powerful  as TDA in 
this particular case. Last but not least, the principle 
behind DCT, taking one period as a pivot and con-
structing a harmonic set by shortening (if necessary) 
all other periods, is well understandable and can be 
applied even by humans and not only by computers 
for smaller values of n .  Its elegance strongly sug-
gests a higher influence on teaching.
A further improvement can be achieved by combin-
ing different tests. Here, Sr∨DCT lead to only very 
little´gain,  not  paying  off  the  increased  effort.  The 
combinations PS∨DCT (similar to the LP approach 
by  Hu  and  Quan  [12])  and CTS∨DCT might  be 
more promising since the concepts behind are less 
similar. This could be a matter of future research.
A combination of the new tests with  the FF policy 
leads  to  new  powerful  MP  scheduling  heuristics. 
They can reach results close to the optimum. This 
suggests  that  the algorithms Sr  and  DCT are  still 
better suitable for multiprocessor scheduling.
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10. Glossary

ASPTS: Accelerated Simply Periodic Task Set
BF: Best Fit
Bu: Burchard (criterion)
CTS: Critical Task Sets
DCT: Distance-Constrained Tasks
FF: First Fit
HB: Hyperbolic Bound
LL: Liu/Layland (criterion)
LLconst: Liu/Layland limit criterion
LP Linear Programming
MP: Multiprocessor
NF: Next Fit
PS: Pillai/Shin (criterion)
RBound RBound criterion
RM(S): Rate-monotonic (scheduling)
RMFF Rate Monotonic First Fit
RMGT Rate Monotonic General Tasks
RMST Rate Monotonic Small Tasks
Sr: Specialization with respect to r
TDA: Time Demand Analysis
WCET: Worst Case Execution Time
WF: Worst Fit
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